

ENGINEERING. DESIGN. ART.

Plastics and Polymer Engineering department

Dr. Dan Lewitus

Two bioprinting-relevant technologies

- 1. Printing of Cell-Laden Microspheres
- 2. Double-indirect printing of tissue engineering scaffolds.

Printing of Cell-Laden and Drug-Delivery Microspheres

Printing cell-laden hydrogel microspheres

Printing cell-laden hydrogel microspheres

mCherry labeled MSCs

"Mass production"

Molten polymer sphere Formation Process

Microspheres from varying materials

IBU-PCL microspheres (10,30, 50% IBU)

<u>Shpigel et al., Eur J Pharm Biopharm.</u> 2018

IBU release from printed microspheres

Porous and small-sized microspheres

Potential uses

- Cell printing and delivery in various matrices
 - Synthetic and natural hydrogels, UV or physically crosslinkable.
- Delivery of growth factors, hormones, etc. in a controlled fashion.
- Potentially printable on pre-existing 3Ds structures.

Double indirect printing of tissue engineering scaffolds

Generate anatomically accurate biodegradable tissue scaffolds

The process

2. STL file

The process

3. Print positive (Objet)

4. Generate mold

The process

5. Fabricate scaffold

Bi-modal pore morphology

PLGA

PLGA + 20% HAP

Potential uses

- Generate anatomically relevant scaffolds
- Can be applied as cell-seeding/printing substrate
- Applicable in vivo and in vitro.