מפגש התנעה לקראת מאגד פיתוח טכנולוגיות בתחום חישה קוונטית

BIRAD

ביראד חברה למחקר ופיתוח בע"מ אוניברסיטת בר-אילן

Pe'er & Rosenbluh: Robust, Loss Resilient, sub-Shot Noise Sensing with Nonlinear Interference

Parametric amplification as a homodyne measurement

Shaked et al, Nature Communications 9, 609 (2018)

Shaked et al, Nature Communications 9, 609 (2018)

Where we can fit in...

Contribution

- Sub shot-noise spectroscopy (linear and Raman)
- Beyond-classical phase measurement (on top of existing shotnoise limit)
- Loss resilient, Ultra broadband

Collaboration

- Clock development
- Super-sensitive chemical sensing
- Any interferometric sensing application...

Quantum Engineering Laboratory Dr. Asaf Albo, BIU

Utilizing symmetry protected point defect states in semiconductors for quantum memory and single photon detection applications.

Perturbation theory applied to the nitrogen localized state and the host extended states gives:

$$\begin{vmatrix} E - E_C & V \\ V & E - E_N \end{vmatrix} = 0 \Longrightarrow E_{\pm} = \frac{1}{2} \left(E_N + E_C \pm \sqrt{\left(E_N - E_C\right)^2 + 4V^2} \right)$$

Shan et al, PRL 1999.

PHYSICAL REVIEW B 85, 115307 (2012)

Electronic bound states in the continuum above (Ga,In)(As,N)/(Al,Ga)As quantum wells

Asaf Albo,^{1,*} Dan Fekete,² and Gad Bahir¹

¹Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel ²Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel (Received 5 June 2010; revised manuscript received 21 October 2011; published 14 March 2012)

Using intersubband photocurrent spectroscopy, we have demonstrated that a bound state in the continuum exists above (Ga,In)(As,N)/(Al,Ga)As quantum wells. The photocurrent spectrum and responsivity show that the excited-state energies lie far above the potential barrier of the quantum well, and the bound nature of the states was confirmed from the long lifetime of the excited carriers and a small coupling with the surrounding continuum. Applying optical phonon scattering theory, we have demonstrated that the relaxation process is governed by scattering from localized nitrogen states to the three-dimensional continuum.

Aviad Frydman Beena Kalisky Richard Berkovits
aviad.frydman@gmail.com beena@biu.ac.il richard.berkovits@biu.ac.il

Scanning SQUID. A highly sensitive magnetic flux imaging technique

Emergent states at interfaces

Mapping tiny currents and supercurrents

Aviad Frydman Beena Kalisky Richard Berkovits • aviad.frydman@gmail.com beena@biu.ac.il richard.berkovits@biu.ac.il

Quantum entanglement mediated by a controllable medium

scanning

Simultaneous measurement

static SOUID

Where we can fit in

- Solid state approach to quantum sensing
- Quantum entanglement in a many quits system
- Detect communication between two distant qbits
- Super sensitive spatial maps of magnetism, current flow, superconductivity

FOR MORE INFORMATION :

Nati Fisher, VP Business Development

BIRAD - Research & Development Company Ltd. Mobile : +972-52-2673435 Tel: +972-77-364-3528 http://www.birad.biz

